树根荐读|工业大数据技术8大应用场景-凯时国际

机器驱动世界,rootcloud赋能工业
为工业各种细分行业提供基于“连接、计算、应用、创新”的凯时国际的解决方案
数字化转型新基座
连接工业资产,打通连接层、平台层、应用层,提供端到端的一站式工业互联网产品
预约体验
请提交需求,我们马上跟您取得联系:
产品与服务 (可多选)*
  • 后市场服务
  • 能耗管理
  • 设备资产管理
  • 融资租赁
  • 云应用
  • 工业可视化
  • ai&大数据分析
  • 云物联
  • 姓名*

  • 公司名称*

  • 手机*

所在区域*

  • 北京
  • 天津
  • 河北
  • 山西
  • 内蒙古
  • 辽宁
  • 吉林
  • 黑龙江
  • 上海
  • 江苏
  • 浙江
  • 安徽
  • 福建
  • 江西
  • 山东
  • 河南
  • 湖北
  • 湖南
  • 广东
  • 广西
  • 海南
  • 重庆
  • 四川
  • 贵州
  • 云南
  • 西藏
  • 陕西
  • 甘肃
  • 青海
  • 宁夏
  • 新疆
  • 香港
  • 澳门
  • 台湾
  • 东城区
  • 西城区
  • 崇文区
  • 宣武区
  • 朝阳区
  • 丰台区
  • 石景山区
  • 海淀区
  • 门头沟区
  • 房山区
  • 通州区
  • 顺义区
  • 昌平区
  • 大兴区
  • 怀柔区
  • 平谷区
  • 密云县
  • 延庆县
  • 和平区
  • 河东区
  • 河西区
  • 南开区
  • 河北区
  • 红桥区
  • 塘沽区
  • 汉沽区
  • 大港区
  • 东丽区
  • 西青区
  • 津南区
  • 北辰区
  • 武清区
  • 宝坻区
  • 宁河县
  • 静海县
  • 蓟 县
  • 石家庄市
  • 唐 山 市
  • 秦皇岛市
  • 邯 郸 市
  • 邢 台 市
  • 张家口市
  • 承 德 市
  • 沧 州 市
  • 廊 坊 市
  • 衡 水 市
  • 太原市
  • 大同市
  • 阳泉市
  • 长治市
  • 晋城市
  • 朔州市
  • 晋中市
  • 运城市
  • 忻州市
  • 临汾市
  • 吕梁市
  • 呼和浩特市
  • 包头市
  • 乌海市
  • 赤峰市
  • 通辽市
  • 鄂尔多斯市
  • 呼伦贝尔市
  • 巴彦淖尔市
  • 乌兰察布市
  • 兴安盟
  • 锡林郭勒盟
  • 阿拉善盟
  • 梅州市
  • 中山市
  • 韶关市
  • 汕头市
  • 深圳市
  • 珠海市
  • 广州市
  • 沈阳市
  • 大连市
  • 鞍山市
  • 抚顺市
  • 本溪市
  • 丹东市
  • 锦州市
  • 营口市
  • 阜新市
  • 辽阳市
  • 盘锦市
  • 铁岭市
  • 朝阳市
  • 葫芦岛市
  • 长春市
  • 吉林市
  • 四平市
  • 辽源市
  • 通化市
  • 白山市
  • 松原市
  • 白城市
  • 延边朝鲜族自治州
  • 哈尔滨市
  • 齐齐哈尔市
  • 鸡西市
  • 鹤岗市
  • 双鸭山市
  • 大庆市
  • 伊春市
  • 佳木斯市
  • 七台河市
  • 牡丹江市
  • 黑河市
  • 绥化市
  • 大兴安岭地区
  • 黄浦区
  • 卢湾区
  • 徐汇区
  • 长宁区
  • 静安区
  • 普陀区
  • 闸北区
  • 虹口区
  • 杨浦区
  • 宝山区
  • 闵行区
  • 嘉定区
  • 浦东新区
  • 金山区
  • 松江区
  • 青浦区
  • 南汇区
  • 奉贤区
  • 崇明县
  • 南京市
  • 无锡市
  • 徐州市
  • 常州市
  • 南通市
  • 连云港市
  • 淮安市
  • 盐城市
  • 扬州市
  • 镇江市
  • 泰州市
  • 宿迁市
  • 杭州市
  • 宁波市
  • 温州市
  • 嘉兴市
  • 湖州市
  • 绍兴市
  • 金华市
  • 衢州市
  • 舟山市
  • 台州市
  • 丽水市
  • 合肥市
  • 淮南市
  • 马鞍山市
  • 淮北市
  • 铜陵市
  • 安庆市
  • 黄山市
  • 滁州市
  • 阜阳市
  • 宿州市
  • 六安市
  • 亳州市
  • 池州市
  • 宣城市
  • 福州市
  • 厦门市
  • 莆田市
  • 三明市
  • 泉州市
  • 漳州市
  • 南平市
  • 龙岩市
  • 宁德市
  • 南昌市
  • 景德镇市
  • 萍乡市
  • 九江市
  • 新余市
  • 鹰潭市
  • 赣州市
  • 吉安市
  • 宜春市
  • 抚州市
  • 上饶市
  • 济南市
  • 青岛市
  • 淄博市
  • 枣庄市
  • 东营市
  • 烟台市
  • 潍坊市
  • 威海市
  • 济宁市
  • 泰安市
  • 日照市
  • 莱芜市
  • 临沂市
  • 德州市
  • 聊城市
  • 滨州市
  • 菏泽市
  • 郑州市
  • 开封市
  • 洛阳市
  • 平顶山市
  • 焦作市
  • 鹤壁市
  • 新乡市
  • 安阳市
  • 濮阳市
  • 许昌市
  • 漯河市
  • 三门峡市
  • 南阳市
  • 商丘市
  • 信阳市
  • 周口市
  • 驻马店市
  • 济源市
  • 武汉市
  • 黄石市
  • 襄樊市
  • 十堰市
  • 荆州市
  • 宜昌市
  • 荆门市
  • 鄂州市
  • 孝感市
  • 黄冈市
  • 咸宁市
  • 随州市
  • 恩施州
  • 仙桃市
  • 潜江市
  • 天门市
  • 神农架林区
  • 长沙市
  • 株洲市
  • 湘潭市
  • 衡阳市
  • 邵阳市
  • 岳阳市
  • 常德市
  • 张家界市
  • 益阳市
  • 郴州市
  • 永州市
  • 怀化市
  • 娄底市
  • 湘西州
  • 南宁市
  • 柳州市
  • 桂林市
  • 梧州市
  • 北海市
  • 防城港市
  • 钦州市
  • 贵港市
  • 玉林市
  • 百色市
  • 贺州市
  • 河池市
  • 来宾市
  • 崇左市
  • 渝中区
  • 大渡口区
  • 江北区
  • 沙坪坝区
  • 九龙坡区
  • 南岸区
  • 北碚区
  • 万盛区
  • 双桥区
  • 渝北区
  • 巴南区
  • 万州区
  • 涪陵区
  • 黔江区
  • 长寿区
  • 江津区
  • 合川区
  • 永川区
  • 南川区
  • 綦江县
  • 潼南县
  • 铜梁县
  • 大足县
  • 荣昌县
  • 璧山县
  • 垫江县
  • 武隆县
  • 丰都县
  • 城口县
  • 梁平县
  • 开县
  • 巫溪县
  • 巫山县
  • 奉节县
  • 云阳县
  • 忠县
  • 石柱土家族自治县
  • 彭水苗族土家族自治县
  • 酉阳土家族苗族自治县
  • 秀山土家族苗族自治县
  • 成都市
  • 自贡市
  • 攀枝花市
  • 泸州市
  • 德阳市
  • 绵阳市
  • 广元市
  • 遂宁市
  • 内江市
  • 乐山市
  • 南充市
  • 宜宾市
  • 广安市
  • 达州市
  • 眉山市
  • 雅安市
  • 巴中市
  • 资阳市
  • 阿坝州
  • 甘孜州
  • 凉山州
  • 贵阳市
  • 六盘水市
  • 遵义市
  • 安顺市
  • 铜仁市
  • 毕节市
  • 黔西南州
  • 黔东南州
  • 黔南州
  • 昆明市
  • 曲靖市
  • 玉溪市
  • 保山市
  • 昭通市
  • 丽江市
  • 普洱市
  • 临沧市
  • 文山州
  • 红河州
  • 西双版纳州
  • 楚雄州
  • 大理州
  • 德宏州
  • 怒江州
  • 迪庆州
  • 拉萨市
  • 昌都地区
  • 山南地区
  • 日喀则地区
  • 那曲地区
  • 阿里地区
  • 林芝地区
  • 西安市
  • 铜川市
  • 宝鸡市
  • 咸阳市
  • 渭南市
  • 延安市
  • 汉中市
  • 榆林市
  • 安康市
  • 商洛市
  • 兰州市
  • 嘉峪关市
  • 金昌市
  • 白银市
  • 天水市
  • 武威市
  • 张掖市
  • 平凉市
  • 酒泉市
  • 庆阳市
  • 定西市
  • 陇南市
  • 临夏州
  • 甘南州
  • 西宁市
  • 海东地区
  • 海北州
  • 黄南州
  • 海南州
  • 果洛州
  • 玉树州
  • 海西州
  • 银川市
  • 石嘴山市
  • 吴忠市
  • 固原市
  • 中卫市
  • 乌鲁木齐市
  • 克拉玛依市
  • 吐鲁番市
  • 哈密地区
  • 和田地区
  • 阿克苏地区
  • 喀什地区
  • 克孜勒苏柯尔克孜自治州
  • 巴音郭楞蒙古自治州
  • 昌吉回族自治州
  • 博尔塔拉蒙古自治州
  • 伊犁哈萨克自治州
  • 塔城地区
  • 阿勒泰地区
  • 石河子市
  • 阿拉尔市
  • 图木舒克市
  • 五家渠市
  • 台北市
  • 高雄市
  • 基隆市
  • 台中市
  • 台南市
  • 新竹市
  • 嘉义市
  • 台北县
  • 宜兰县
  • 桃园县
  • 新竹县
  • 苗栗县
  • 台中县
  • 彰化县
  • 南投县
  • 云林县
  • 嘉义县
  • 台南县
  • 高雄县
  • 屏东县
  • 台东县
  • 花莲县
  • 澎湖县
  • 佛山市
  • 江门市
  • 湛江市
  • 茂名市
  • 肇庆市
  • 惠州市
  • 汕尾市
  • 河源市
  • 阳江市
  • 清远市
  • 东莞市
  • 潮州市
  • 揭阳市
  • 云浮市
  • 海口市
  • 三亚市
  • 五指山市
  • 琼海市
  • 儋州市
  • 文昌市
  • 万宁市
  • 东方市
  • 定安县
  • 屯昌县
  • 澄迈县
  • 临高县
  • 苏州市
  • 芜湖市
  • 保定市
  • 蚌埠市
  • 吉林省长白山保护开发区
  • 平潭市
  • 香港岛
  • 九龙半岛
  • 新界
  • 图木舒克市
  • 北屯市
  • 铁门关市
  • 双河市
  • 可克达拉市
  • 澳门半岛
  • 离岛
  • 琼中黎族苗族自治县
  • 保亭黎族苗族自治县
  • 白沙黎族自治县
  • 昌江黎族自治县
  • 乐东黎族自治县
  • 陵水黎族自治县

公司所在行业*

  • 农林牧渔
  • 采矿业
  • 制造业
  • 水电燃气
  • 建筑业
  • 批发零售
  • 交通运输
  • 住宿餐饮
  • 互联网
  • 金融业
  • 房地产业
  • 商务服务
  • 科技服务
  • 居民服务
  • 教育
  • 公共卫生
  • 文体娱乐
  • 公共机构

如果您有其他想了解的信息或者疑问,欢迎给我们留言(选填)

树根荐读|工业大数据技术8大应用场景
来源:树根互联2020.05.26

工业大数据也是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、rfid、工业传感器、工业自动控制系统、工业物联网、erp、cad/cam/cae/cai等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高。因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。

工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。

1、加速产品创新

客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。

 

2、产品故障诊断与预测

这可以被用于产品凯时网站的售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。在马航mh370失联客机搜寻过程中,波音公司获取的发动机运转数据对于确定飞机的失联路径起到了关键作用。我们就拿波音公司飞机系统作为案例,看看大数据应用在产品故障诊断中如何发挥作用。在波音的飞机上,发动机、燃油系统、液压和电力系统等数以百计的变量组成了在航状态,这些数据不到几微秒就被测量和发送一次。以波音737为例,发动机在飞行中每30分钟就能产生10 tb数据。这些数据不仅仅是未来某个时间点能够分析的工程遥测数据,而且还促进了实时自适应控制、燃油使用、零件故障预测和飞行员通报,能有效实现故障诊断和预测。再看一个通用电气(ge)的例子,位于美国亚特兰大的ge能源监测和诊断(m&d)中心,收集全球50多个国家上千台ge燃气轮机的数据,每天就能为客户收集10g的数据,通过分析来自系统内的传感器振动和温度信号的恒定大数据流,这些大数据分析将为ge公司对燃气轮机故障诊断和预警提供支撑。风力涡轮机制造商vestas也通过对天气数据及期涡轮仪表数据进行交叉分析,从而对风力涡轮机布局进行改善,由此增加了风力涡轮机的电力输出水平并延长了服务寿命。

3、工业物联网生产线的大数据应用

现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。

 

4、工业供应链的分析和优化

当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。rfid等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。以海尔公司为例,海尔公司供应链体系很完善,它以市场链为纽带,以订单信息流为中心,带动物流和资金流的运动,整合全球供应链资源和全球用户资源。在海尔供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,海尔公司能够持续进行供应链改进和优化,保证了海尔对客户的敏捷响应。美国较大的oem供应商超过千家,为制造企业提供超过1万种不同的产品,每家厂商都依靠市场预测和其他不同的变量,如销售数据、市场信息、展会、新闻、竞争对手的数据,甚至天气预报等来销售自己的产品。利用销售数据、产品的传感器数据和出自供应商数据库的数据,工业制造企业便可准确地预测全球不同区域的需求。由于可以跟踪库存和销售价格,可以在价格下跌时买进,所以制造企业便可节约大量的成本。如果再利用产品中传感器所产生的数据,知道产品出了什么故障,哪里需要配件,他们还可以预测何处以及何时需要零件。这将会极大地减少库存,优化供应链。

5、产品销售预测与需求管理

通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。在某些分析中我们可以发现,在开学季高校较多的城市对文具的需求会高很多,这样我们可以加大对这些城市经销商的促销,吸引他们在开学季多订货,同时在开学季之前一两个月开始产能规划,以满足促销需求。对产品开发方面,通过消费人群的关注点进行产品功能、性能的调整,如几年前大家喜欢用音乐手机,而现在大家更倾向于用手机上网、拍照分享等,手机的拍照功能提升就是一个趋势,4g手机也占据更大的市场份额。通过大数据对一些市场细节的分析,可以找到更多的潜在销售机会。

 

6、生产计划与排程

制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(mes/dcs)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的aps来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。

7、产品质量管理与分析

传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。这些海量数据究竟是企业的包袱,还是企业的金矿呢?如果说是后者的话,那么又该如何快速地拨云见日,从“金矿”中准确地发现产品良率波动的关键原因呢?这是一个已经困扰半导体工程师们多年的技术难题。

某半导体科技公司生产的晶圆在经过测试环节后,每天都会产生包含一百多个测试项目、长度达几百万行测试记录的数据集。按照质量管理的基本要求,一个必不可少的工作就是需要针对这些技术规格要求各异的一百多个测试项目分别进行一次过程能力分析。如果按照传统的工作模式,我们需要按部就班地分别计算一百多个过程能力指数,对各项质量特性一一考核。这里暂且不论工作量的庞大与繁琐,哪怕有人能够解决了计算量的问题,但也很难从这一百多个过程能力指数中看出它们之间的关联性,更难对产品的总体质量性能有一个全面的认识与总结。然而,如果我们利用大数据质量管理分析平台,除了可以快速地得到一个长长的传统单一指标的过程能力分析报表之外,更重要的是,还可以从同样的大数据集中得到很多崭新的分析结果。

 

8、工业污染与环保检测

穹顶之下》令人印象深刻的一点是通过可视化报表,柴静团队向观众传递雾霾问题的严峻性、雾霾的成因等等。这给我们带来的一个启示,即大数据对环保具有巨大价值。《穹顶之下》图表的原生数据哪里来的呢?其实并非都是凭借高层关系获取,不少数据都是公开可查,在中国政府网、各部委网站、中石油中石化凯时网站官网、环保组织凯时网站官网以及一些特殊机构,可查询的公益环保数据越来越多,包括全国空气、水文等数据,气象数据,工厂分布及污染排放达标情况等数据等等。只不过这些数据太分散、太专业、缺少分析、没有可视化,普通人看不懂。如果能够看懂并保持关注,大数据将成为社会监督环保的重要手段。

近日百度上线《全国污染监测地图》就是一个很好的方式,结合开放的环保大数据,百度地图加入了污染检测图层,任何人都可以通过它查看全国及自己所在区域省市,所有的在环保局监控之下的排放机构(包括各类火电厂、国控工业企业和污水处理厂等)的位置信息、机构名称、排放污染源的种类,最近一次环保局公布的污染排放达标情况等。可查看距离自己最近的污染源,出现提醒,该监测点检测项目,哪些超标,超标多少倍。这些信息可以实时分享到社交媒体平台,告知好友,提醒大家一同注意污染源情况及个人安全健康。

总结

工业大数据应用的价值潜力巨大。但是,实现这些价值还有很多工作要做。一个是大数据意识建立的问题。过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。很多工业企业的数据分布于企业中的各个孤岛中,特别是在大型跨国公司内,要想在整个企业内提取这些数据相当困难。因此,工业大数据应用一个重要议题是集成应用。

立即联系树根互联专家团队,为您定制凯时国际的解决方案
400-868-1122
凯时国际 copyright © 2021 rootcloud. all rights reserved. 树根互联股份有限公司 凯时国际的版权所有 粤b2-2010747
网站地图